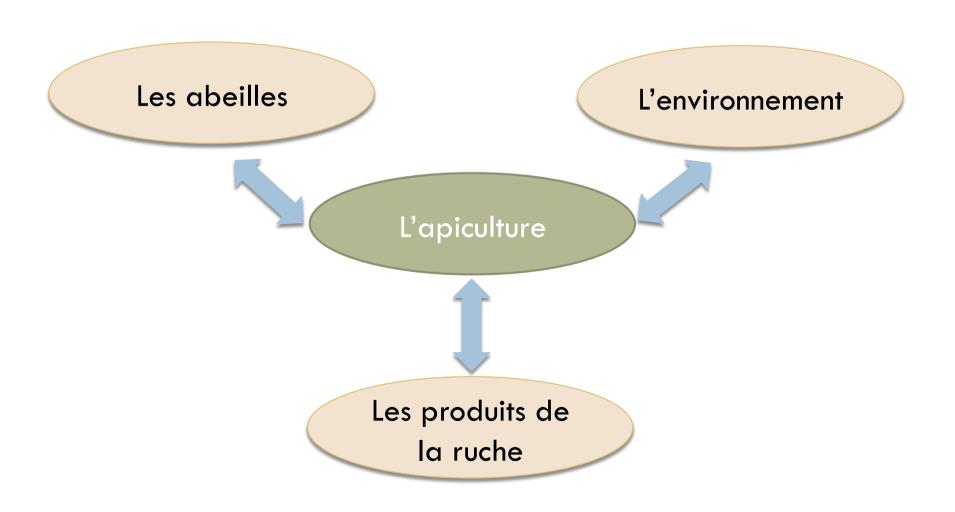


LES PRODUITS DE LA RUCHE: NOUVELLES CONNAISSANCES ET PERSPECTIVES FUTURES POUR LA COMMERCIALISATION DE PRODUITS DIFFÉRENCIÉS

Science et apiculture Etienne Bruneau CARI asbl


Plan de l'exposé

- Les axes de développement des produits de la ruche
- Actualité
 - Les contaminants
 - Le dossier OGMs
- En pratique
 - Technologie du miel

Les axes de développement

Contexte

Le contexte

Les abeilles

Contexte

- □ Animal = colonie d'abeilles
- Insecte social
- Animal sauvage
- Elevage environnemental

L'environnement

Contexte

- □ Environnement =
 - □ Paysage, zone de butinage
 - Climat
 - Les consommateurs des produits de la ruche
 - La législation, les règles internationales

L'apiculture

Contexte

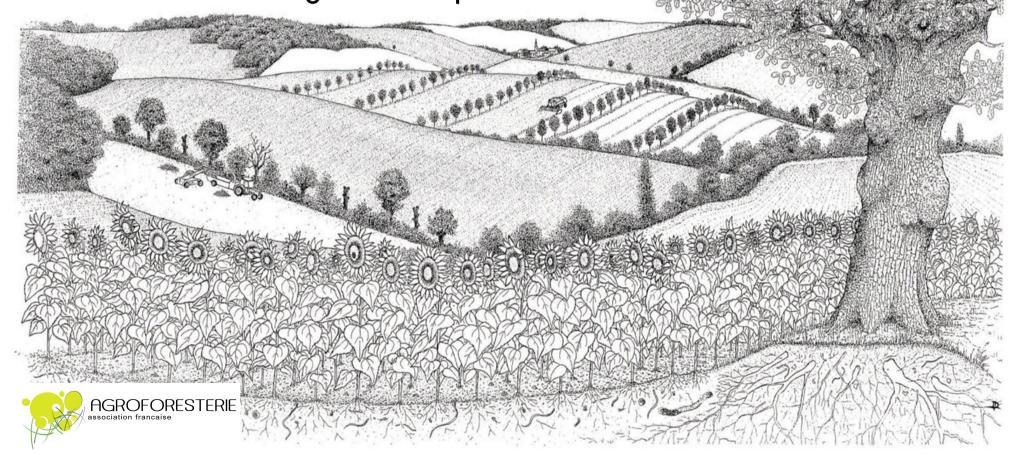
- □ Travail en relation directe avec la nature
- Nécessite une bonne connaissance
 - De l'insecte social
 - De l'environnement
- Observer

=> Gérer

=> Production alimentaire

=> Pollinisation, élevage...

Les produits de la ruche


Contexte

- Les produits de la ruche
 - Miel
 - Pollen
 - □ Gelée royale
 - Cire
 - □ Propolis...
- □ Les produits d'élevage
- Les services de pollinisation

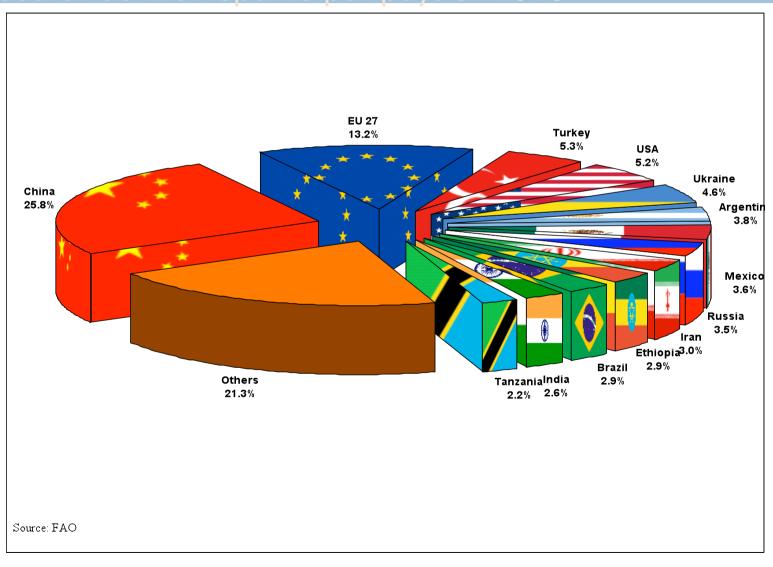
- Les abeilles
 - De plus en plus menacées
 - Perte actuelle de leur immunité
 - Pertes très importantes enregistrées
 - Difficulté de trouver des races pures
 - Meilleure connaissance de leur génétique
 - Marché de paquets d'abeilles international (UE)
 - Marché des reines ouvert à tous pays sans le coléoptère des ruches et sans tropilaelaps

- L'environnement évolue rapidement
 - Environnement floral très dépendant
 du modèle agricole en place

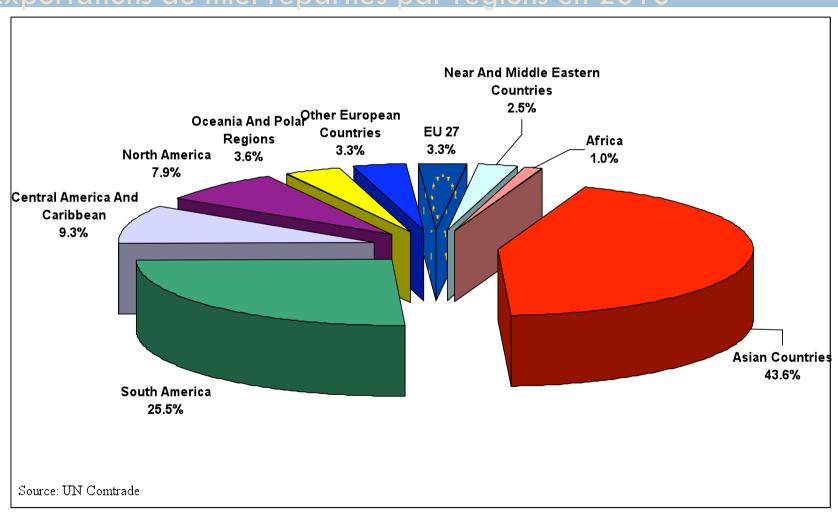
- □ L'environnement évolue rapidement
 - Climat perturbé avec une augmentation des phénomènes extrêmes (sécheresses, T° extrêmes...)
 - Consommateurs
 - De plus en plus sensibilisés à la qualité hygiénique des produits et aux résidus de produits
 - Retour à la nature
 - □ Règles élaborées au niveau mondial (Codex) et de l'UE

- L'environnement évolue rapidement
 - → Accès rapide à l'information
 - ⇒Etat des colonies : développement des outils de contrôle balances, T°, sons...
 - ⇒Situation sanitaire : suivi des population de varroas (réseau sanitaire, monitoring...)
 - → Données du marché : données accessibles sur les bases de données de l'UE, de la FAO, sur des sites spécialisés... - rien sur le marché interne de l'UE

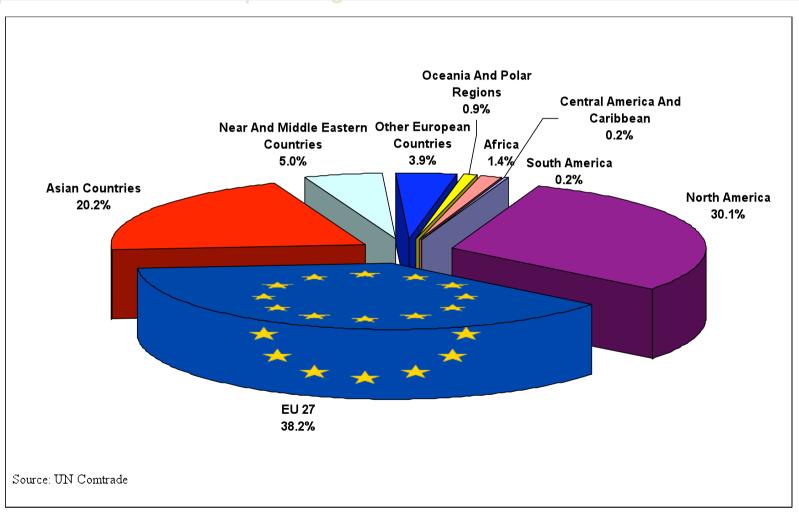
- □ L'environnement évolue rapidement
 - Bonne connaissance des ressources mellifères
 - Potentiel en pollen, nectar et propolis et conditions de leur production
 - Spécificités de la flore mellifère : qualités particulières (par ex pollen de saule pour soigner les yeux...)
 - Dangers spécifiques risque de concentration de toxiques...

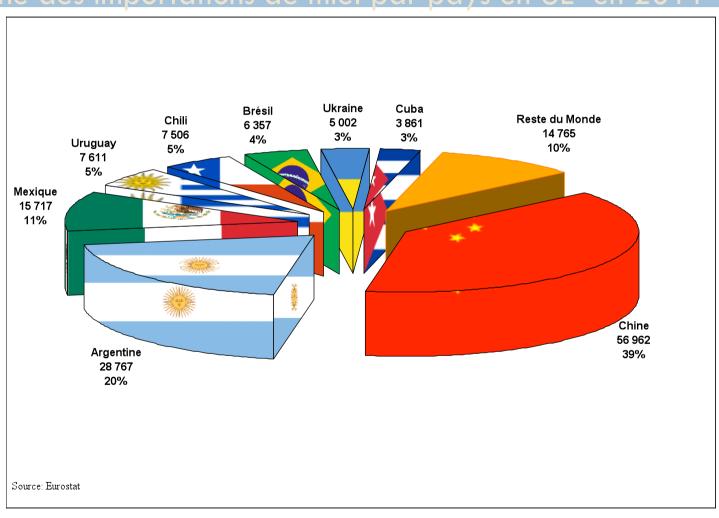


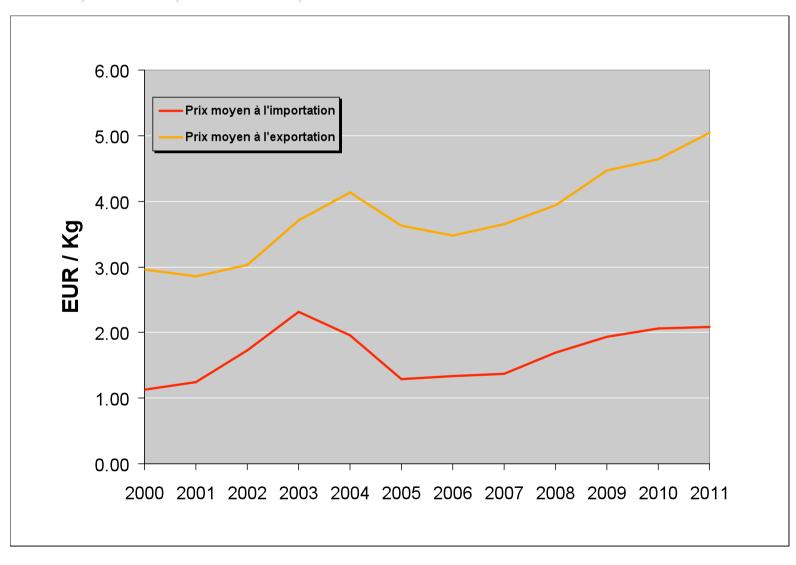
- L'apiculture doit pouvoir évoluer
- → Comment améliorer la viabilité des exploitations ?
- → Adaptabilité et souplesse des exploitations apicoles
- → Investissements limités et polyvalents
- → Travail en réseaux...
- → Utilisation de plus en plus fréquente de
 - Guide de bonnes pratiques apicoles
 - Labels de qualité : bio, IGP, AOP, qualité médicale


Tendances

- Les produits de la ruche,
 - Un marché porteur
 - Image positive des produits
 - Naturels
 - Bien-être
 - Santé
 - Consommation en augmentation
 - Le marché du miel, le poids des importations


Production de miel répartie par pays en 2010


Exportations de miel réparties par régions en 2010


Importations de miel par région en 2010

Origine des importations de miel par pays en UE en 2011

Prix moyens import – export

Balance du marché du miel

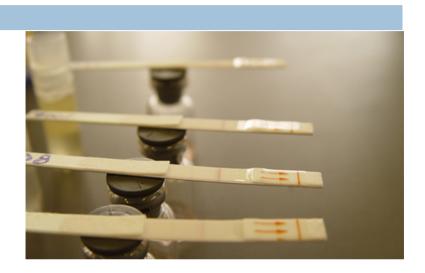
	Production Utilisable	Imports	Exports	Population	Consommation		Auto- suffisance
	(1000 t)	(1000 t)	(1000 t)	million	(1000 t) (kg/hab)	%
1	2	3	4	5	6	7	8
2008	200	142	10	495	332	0,6	60,2
2009	203	137	9	499	331	0,6	61,3
2010	224	148	11	501	361	0,7	62,0

Tendances

- □ Les produits de la ruche
 - Compétition avec des produits de basse qualité
 - Volatilité des prix difficilement prévisible sur le marché de gros (marché incertain, stockage ?)
 - Perte de rentabilité des exploitations
 - Difficulté d'investir
 - Intérêt de l'investissement qualité ?

- Les produits de la ruche
 - Besoin de qualité certifiée
 - Besoins de techniques analytiques fiables, rapides et accessibles
 - Vérifier si les produits répondent bien aux critères légaux
 - Vérifier leur origine
 - Vérifier leur niveau de dégradation et/ou leur stabilité
 - Vérifier leurs propriétés spécifiques
 - Besoin de laboratoires fiable (accrédités) et de capacité suffisante pour fournir des résultats rapides

- Les produits de la ruche
 - Bonne connaissance des produits :
 - Caractérisation au départ de critères de qualité
 - Préservation des qualités ; conditions, durée de vie...
 - Besoin de mettre en place une base de données avec des données validées sur des miels et autres produits de référence
 - ⇒ Valorisation
 - Origine botanique des produits : miels, pollens, propolis
 - Origine géographique spécifique


- □ Les produits de la ruche
 - Mise en évidence des propriétés et des matières actives présentes dans les produits sur le plan du bien-être et de la santé sur base de produits très bien définis
 - ⇒ Permet d'augmenter la diversification de la production
 - → Permet d'améliorer la valeur marchande des produits
 - Sur base de la présence de constituants spécifiques assurant des propriétés particulières et recherchées : anti radicaux libres, antibiotique, régénératrice...

- □ Les produits de la ruche
 - Nécessité d'avoir des définitions
 - Besoins de critères pour les contaminants
 - LMR pour les médicaments, pesticides, OGM...
 - Limite minimale de détection pour les laboratoires ≠0
 - Accréditation des analyses et des laboratoires

- Les produits de la ruche
 - Traçabilité et contrôles
 - Les contrôles
 - Trouver les bons indicateurs
 - Pas seulement les critères légaux
 - Radio isotopes, pollens ou indicateurs d'origine, fermentation, spectre de sucres incohérent
 - Amélioration des techniques d'analyse
 - Pas trop coûteuses : utilisables en routine (kits...)
 - Renouvellement des techniques
 - Fréquente modification des fraudes

- Production de matériel biologique
 - Les besoins en abeilles augmentent tous les ans
 - Les échanges de matériel génétique prennent rarement en compte le patrimoine génétique
 - La connaissance du génome de l'abeille offre un nouvel outil pour les sélectionneurs

- □ Production de matériel biologique
 - Besoin d'améliorer la tolérance vis-à-vis des pathogènes et plus particulièrement Varroa destructor
 - Besoin de produire plus de colonies à l'échelle locale
 - □ Généralisation de l'élevage
 - Maintien des races locales
 - mise en place d'une politique à large échelle avec un consensus des apiculteurs
 - Développement de la production de gelée royale

Tendances

- Matériel mielleries
 - Secteur où les recherches sont en nette diminution depuis plusieurs années
 - Objectifs poursuivis par les fabricants;
 - Respect des critères d'hygiène et de sécurité
 - Faciliter le travail des apiculteurs
 - Objectifs à développer :
 - Développement de standards pour le matériel
 - Maintien des caractéristiques des produits durant le conditionnement le stockage et la vente

■ N'oublions pas,

Nous voulons des produits

- 'Propres'
- 'Non dégradés'
- 'Naturels'
- 'Sains'

- □ 'Propre'
 - Les contaminants peuvent avoir des origines multiples :
 - Traitements illégaux
 - Traitements non autorisés dans certains pays
 - Contaminations 'domestique' (matériel, techniques...)
 - Contaminations environnementale (pesticides...)

- 'Propre'
 - □ Que faire?
 - LMR claires et uniformes pour les produits de traitement
 - Développement et application de 'Guide de bonnes pratiques'
 - Utilisation de matériel de qualité alimentaire

- 'Non dégradé'
 - On peut trouver sur le marché une série de dégradations due à l'age ou aux mauvaises conditions de conservation
 - Nous avons besoin de compléments d'informations sur l'évolution de la gelée royale, le pollen, la propolis
 - On doit fixer des critères de qualité plus spécifiques
 - Besoin d'un matériel qui respecte les produits et de trouver de nouvelles techniques qui facilitent la conservation des produits

Vitamines dans le pollen en pelotes	Min En μg/kg	Max En µg/kg	Perte à 42°C en %	Perte à 3à-35°C en %
Provitamine A	56,3	198,9	56,5	46,4
Vitamine C	273,9	560,3	8,1	4,1
Vitamine E	13,5	48,5	35,5	28,9

- 'Naturel'
 - □ Par définition, le miel doit répondre à ce critère
 - On peut l'appliquer à tous les autres produits
 - Pour la gelée royale, peut-on accepter un nourrissement artificiel ?
 - Développement des produits biologiques
 - Ce marché lié aux produits naturels devrait se développer à l'avenir

Recherche de la qualité

- □ 'Sain'
 - Des critères de qualité doivent être fixés pour une utilisation en apithérapie
 - Les produits doivent mieux être caractérisés sur cette base
 - On doit mieux maîtriser les conditions de conservation...
 - On devrait mettre en place des guide de bonnes pratiques apicoles basés sur cette qualité.

Un grand travail pour le futur

de l'abeille et des apiculteurs

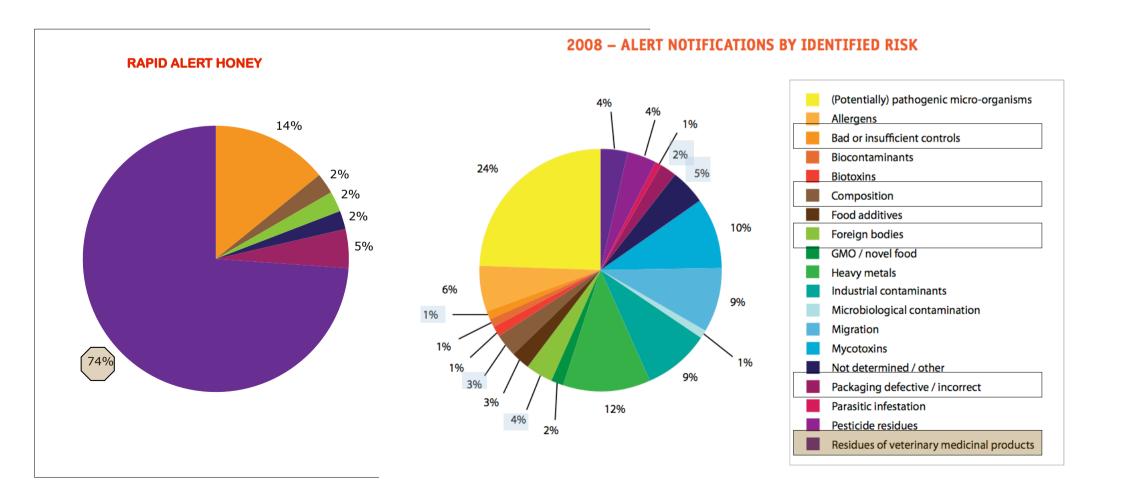
Situation des contaminants

Le contexte

Leur origine

La situation actuelle

Le contexte


- Au cours de ces dernières années la majorités des contrôles ont été basés en UE sur :
 - Les médicaments vétérinaires
 - Les falsifications
- En UE, la plupart des problèmes viennent de l'utilisation d'antibiotiques interdits (2003 streptomycin, 2005 chloramphenicol, 2007 sulphonamides) mais la situation s'améliore : 26 notifications pour le miel et le gelée royale en 2007, 31 en 2008 et seulement 12 en 2009.

Le contexte

Illustration
 en 2008 Situation du miel
 et de la gelée
 royale
 (Alert notification EFSA)

Hazard category	All food	Honey and
		Royal jelly
(potentially) pathogenic micro-organisms	452	
allergens	48	
bad or insufficient controls	64	6
biocontaminants	38	
biotoxins (other)	12	
composition	88	1
food additives	195	
foreign bodies	145	1
GMO / novel food	43	
heavy metals	211	
industrial contaminants	116	
microbiological contamination	61	
migration	121	
mycotoxins	931	
not determined / other	99	1
organoleptic aspects	63	
packaging defective / incorrect	31	2
parasitic infestation	39	
pesticide residues	178	
residues of veterinary medicinal products	105	31
total	3132	42

Le contexte

Type de contaminant

- Pesticides
 - Produits vétérinaires
 - Produits phytosanitaires
- Alkaloides Pyrrolizidinique
- □ "OGM"
- Alimentation
- Contamination microbienne
- Hydrocarbones aromatique polycycliques (HAP)
- Métaux lourds
- Radioactivité

Pesticides

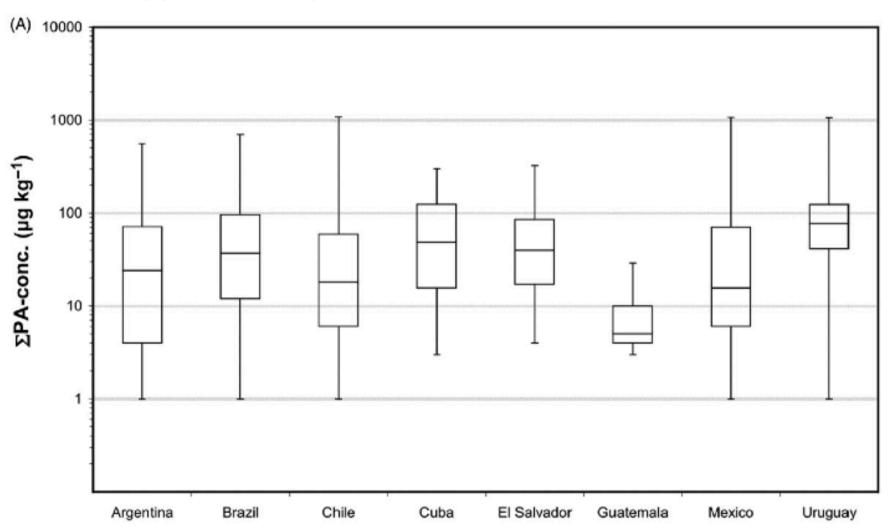
- 121 ≠ pesticides dans 887 échantillons de miel, cire et abeilles
 - 30 fongicides,
 - 17 herbicides
 - 16 pyréthrinoïdes parents,
 - 13 organophosphorés,
 - 4 carbamates,
 - 4 néonicotinoides,
 - 4 régulateur de croissance pour les insectes,
 - 3 cyclodiènes chlorés,
 - 3 organochlorés,
 - 1 formamidine,
 - 8 acaricides/insecticides,
 - 2 synergistes

Pesticides

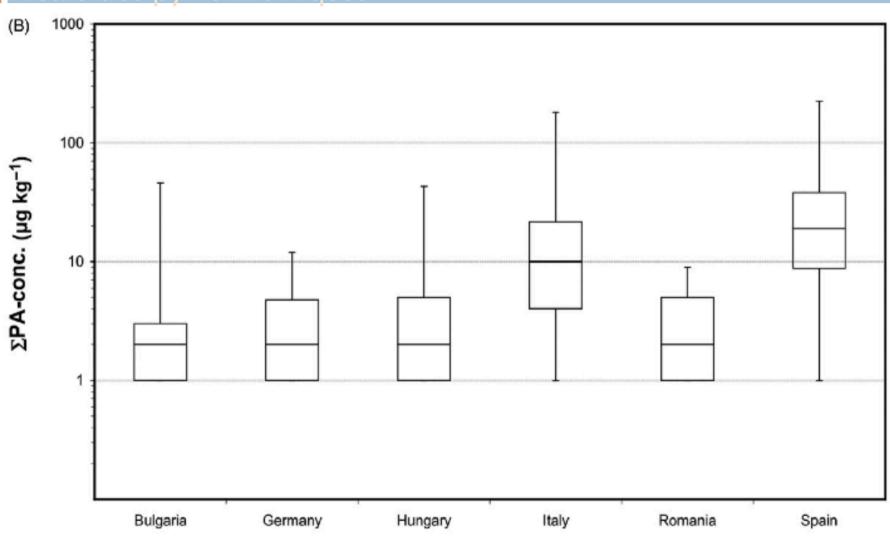
- LMR fixées uniquement pour le miel en UE
 - Miel12/52 > LMR du miel
 - \blacksquare Cire 27/52 > LMR du miel
 - Pollen 29/52 > LMR du miel
- Détection/échantillon
 - Moyenne de 6,2 pesticides
 - 98 % des cires gaufrées sont contaminées : moyenne de 6 contaminants (max 39) - acaricides
 - 98 Pesticides détectés dans le pollen (aussi des acaricides)

Alcaloïdes pyrrolizidiniques

200 alcaloïdes identifiés
 dans 13 familles de plantes.
 Plusieurs d'entre-elles sont visitées par les abeilles


Plantes à alcaloïdes pyrrolizidiniques

Famille	Nom commun	Nom scientifique	alcaloïdes pyrrolizidiniques	
DODACINACEAE	Bourrache	Borago officinalis L.	lycopsamine, amabiline, supinine	
BORAGINACEAE	Consoude	Symphytum officinale L.	lycopsamine, intermédine, symphytine	
ASTERACEAE	Tussilage	Tussilago farfara L.	senkirkine, sénécionine	
	Eupatoire	Eupatorium cannabinum L.	échinatine, lycopsamine, intermédine, rindérine	
	Séneçon de Jacob	Senecio jacobaea L.	esters de la rétronécine : jacobine, éruciflorine, sénéciphylline, sénécionine	
	Séneçon commun	Senecio vulgaris L.	sénéciphylline, sénécionine, rétrorsine, spatioidine, usaramine, intégerrimine	


Alcaloïdes pyrrolizidiniques

- La plupart de ces substance sont mutagènes et induisent des tumeurs hépatiques.
- Ces substances peuvent se retrouver dans le pollen et de ce fait dans le miel (QSI 2010)
 - □ 65 % de 381 miels européens (moy 26 ; 1 225 µg/kg)
 - □ 68 % de 2839 miels d'Amérique centrale et du sud (moy 67 ; 1 – 1087 µg/kg)
 - □ 60 % des 119 pollens (moy 1.846 ; 1 37.855µg/kg)
- Ces valeurs sous-évaluent probablement le contenu total en PA dans les miel car des alcaloïdes non identifiés ne sont pas quantifiés.

Alcaloïdes pyrrolizidiniques

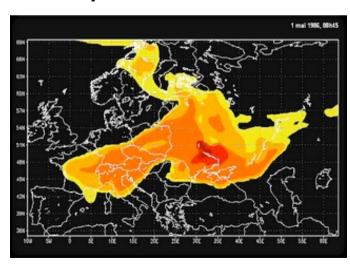
Alcaloïdes pyrrolizidiniques

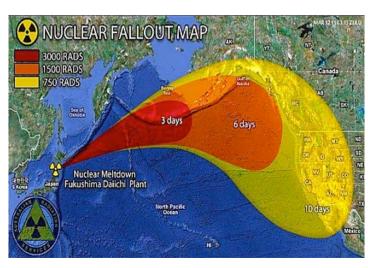
Alcaloides pyrrolizidiniques

- Pour les conditionneurs
 - Certains ont fixé des limites (<20µg/kg)</p>
 - Il n'existe pas de consensus

Pour le CODEX

- Il faut éviter les zones à forte concentration de plantes susceptibles de produire ces PA : vipérines, bourrache, séneçon...
- La filtration des pollens ne peut légalement pas être utilisée
- On doit relativiser le problème vu les quantités consommées


- □ OGM
 - □ Ce point sera dévelopé par la suite.


Microbiologique

- □ Pollen : une série de champignons peuvent développer des aflatoxines (B₁, B₂) et des ochratoxines
 - Penicilium verrucosum, Aspergillus niger, A. carbonarius,
 A. ochraceus, A. flavus, A. parasitius, Alternaria spp
 - Penicilium spp prédominants
 - Cela peut constituer un réel danger si le pollen présente une humidité importante (> 6%).
- Miel: Clostridium botulinum peut être observé (7% miels finlandais et 16 % miels d'importation)

- □ Hydrocarbures polycycliques aromatiques (HAP₄):
 - □ Le miel présente les teneurs les plus faibles (moyenne : 0,8 ppb max 5ppb)
 - □ Grande variabilité dans le pollen (moyenne : 7,1 ppb max 129 ppb)
 - Aucune donnée disponible pour la propolis
 - Dépend du contexte environnemental (industrie pétrochimique, ville...)

- □ Radioactivité (LMR : 600 Bq/kg):
 - □ Problèmes après Tchernobil en 1986
 - Tous les produits de la ruche sont concernés
 - □ Pour le miel, ce sont les miels de bruyère qui présentaient les teneurs les plus élevées

- Métaux lourds :
 - □ Plomb (Pb) et cadmium (Cd): principaux toxiques
 - Pb en régression principalement sur le pollen et la propolis
 - Cd peut être transporté par la plante => aussi nectar...
 - Propolis : produit dans lequel on retrouve les niveaux de pollution les plus importants

- Les fraudes liées à la falsification des miels par ajouts de sucres peuvent toucher un pourcentage significatif du marché.
- □ Leur détection est difficile et coûteuse :
 - Analyse microscopique : éléments de maïs...
 - Analyse de radio isotopes : C¹³ C¹⁴ dont le rapport change en fonction de l'origine botanique (sirop de mais
 - Récupération de miels fermentés : laisse des trace de glycérol
 - Analyse à composantes multiples : grande base de données

 Contamination par les sirops hydrolysés enzymatiquement (ßfructofuranosidase : 1000 U/kg) – exemple tchèque

PRÜFAUFTRAG: Fremdenzymaktivität mittele Enzym-Test

Analyt/en	Ergebnis	Einheit	Methode			
ß-Fructofuranosidase Aktivität	128,2	units/kg	PM DE01.102 (a)			
n.a.: nicht analysiert; n.n.: nicht ashwei bar < 20 units/ kg Honig;						
 (a) : akkreditierte Methode. (na) : nicht akkreditierte Methode. Der Pr üfbericht darf nur vollst ändig vervielf ältigt werden. Das Pr üfergebnis bezieht sich ausschließlich auf die dieser Untersuchung zugrundeliegende Probe. 						

Beurteilung:

Die Probe erfüllt nicht die Specifikationen für unverfälschten Honig. Bei der vonliegen der Probe wurde die Aktivität des hot affremden Enzyms beta-Fructofuranosidase (Invertase) nachz wiesen. Dies deutet auf einen unerlaubten zusählten beta-Fructofuranosidase al. auzgmatisch gewonnenem Invertzucker hin. Damit erfüllt die Probe nicht die Forderungen der Richtlinie 2001/110/EG vom 20. Dezember 2001 über Honig.

 Colorant « caramel » pour transformer des miels en miellats : exemple slovaque (11/26 miellats)

■ 4 étapes

Maintenance et choix du matériel

Conduite des ruches

Environnement des ruchers

Miellerie

- Maintenance et choix du matériel
 - Contamination:
 - Ruches (peinture, plastique...), cadres,
 - Cire: traitement, origine
 - Air ambiant dans les locaux
 - Bâtiment non adapté, pas propre

- Conduite des ruches et récolte des produits
 - Contamination par médicaments vétérinaires
 - Enfumoir
 - Adultération du miel par l'alimentation : sucres...
 - Microbiologique contamination par le sol pour le miel récolte de pollen trop humide
 - Utilisation de produits non alimentaires dans la ruche (ex Fabi spray)

- Environnement des ruches
 - Le butineuses couvrent un rayon de 6 km (50 km2)
 - Elles peuvent récolter avec le nectar, le pollen et la propolis
 - Des pesticides
 - Des alcaloïdes pyrrolizidiniques
 - Du pollen GM
 - Des métaux lourds,
 - Des éléments radioactifs
 - **...**

- Miellerie
 - Environnement non adapté aux produits alimentaires
 - Miel et propolis ≠ pollen et gelée royal
 - Utilisation de matériel non alimentaire
 - Mauvais nettoyage,
 - Produit non autorisé pour le nettoyage
 - Eau non potable
 - Le travailleur

OGM ET Apiculture

- Introduction
- □ Qu'est-ce qu'un OGM ?
- Exemple des toxines Bt
- □ Voie(s) d'exposition des abeilles
- Effets des OGM sur les abeilles
- □ Décision de la Cour de Justice de l'UE
- Les questions
- Position des apiculteurs
- Situation actuelle

Introduction

- Les OGMs sont au cœur d'un débat européen
- La grande majorité des consommateurs européens ne désirent pas en consommer
- 80 % du bétail est alimenté au départ d'OGMs
- Pour l'alimentation humaine, on applique la tolérance de 0,9 % (0,1 % pour les produits bio) pour les OGMs agréés.
- Pour les OGMs non autorisés, la tolérance 0 est appliquée.

Introduction

- Les produits de la ruche sont toutes des productions animales : miel, pollen, gelée royale, propolis, cire.
- S'il n'y a pas de transformation du code génétique, la dérogation de non étiquetage appliquée au niveau des productions animales ne s'applique pas.
- OGM = Menace par rapport à l'image des produits de la ruche
 - Produits ((naturels))
 - □ Produits ((santé))

Qu'est-ce qu'un OGM?

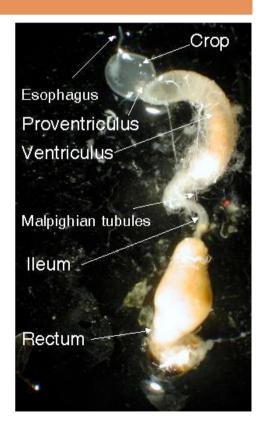
- Organisme génétiquement modifié = « organisme, à l'exception des êtres humains, dont le matériel génétique a été modifié d'une manière qui ne s'effectue pas naturellement par multiplication et/ou par recombinaison naturelle » (dir 2001/18/EC)
- Technique de « génie génétique » : un (ou plusieurs)
 « événement(s) » de transformation génétique
- → Permet d'introduire ainsi un ou plusieurs nouveaux caractères dans un organisme, à condition que le(s) gène(s) impliqué(s) soi(en)t connu(s).

Qu'est-ce qu'un OGM?

- Les séquences porteuses du gène génétiquement transformé commencent par un promoteur
- Plus de 90 % des OGMs débutent leur séquence par un même promoteur :
 - → utilisé pour détecter les OGMs
 - présent à l'état naturel dans certains colzas (maladie)
 - → Faux positifs
 - → Analyses complémentaires

Utilisation d'un OGM

- Caractères d'intérêt agronomique
 - Herbicide-tolérant (61%)
 - Insecte-résistant (17%)



Herbicide-tolérant et insecte-résistant : « stacked events » ou « événements multiples » (22%) : de + en + développés

Utilisation d'un OGM

Insecte-résistants : action sur le système digestif

- Perturbation des membranes du tube digestif par des protéines insecticides spécifiques de récepteurs digestifs
 - Toxines Bt
 - Lectines
- Perturbation de la digestion par des protéines inhibitrices
 - Inhibiteurs de protéases (PI)
 - \square Inhibiteurs d' α -amylase

Exemple des toxines Bt

- Bt pour Bacillus thuringiensis
 - Bactérie du sol
 - Inclusions cristallines contenant des protéines insecticides (toxines Cry)
 - Produit des protoxines nécessitant une activation en plusieurs étapes pour être activées en toxines Cry
 - Mécanisme d'activation
 - → spécificité pour un groupe d'insectes
 - ex : Cry1Ab → Lepidoptères

Exemple des toxines Bt

- Isolement du(des) gène(s) codant pour les toxines
 Cry
- Insertion de séquences tronquées dans la plante, sous le contrôle d'un promoteur
- plante produit la(les) toxine(s) Bt
 - □ à concentration élevée : ↑° exposition
 - □ dans toute la plante : ↑ ° exposition
 - durant toute la vie de la plante : ↑ ° exposition
 - □ sous forme pré-activée : ↓ ° spécificité

Voie(s) d'exposition des abeilles

- □ Pollen +++
- □ Nectar ?
- Miellat ?
- □ Résines, gommes ?
- □ Guttation ?
- □ Alimentation avec des protéines OGMs +

Effets des OGM sur les abeilles

- Effets directs
 - Peu mis en évidence
 - Effets sublétaux
 - (comportement alimentaire, butinage)
 - Transfert horizontal de gènes vers des bactéries de l'intestin (signalé)
- Effets indirects
 - Changement de phénotype des plantes (physiologie, biochimie, morphologie)
 - Perte de la flore mellifère suite à l'utilisation d'herbicides (ex. Argentine)

- Dossier Karl Heinz Bablok
 - Ruches à proximité de champs de maïs OGM
 - Retrouve du pollen GM dans le miel
 - Destruction du miel
 - Porte l'affaire devant la Haute Cour administrative bavaroise
 - Affaire transmise à la CJUE
 - Avis de la CJUE le 6 septembre 2011(C-442/09)

L'avis sur base du Règlement N°1829/2003

- Le pollen n'est pas un OGM (plus de capacité reproductive) mais bien « produit à partir d'un OGM »
- Les produits tels que le miel et les compléments alimentaires contenant le pollen cité ci-dessus constituent des aliments contenant des ingrédients « produits à partir d'OGM », indépendamment du fait que la contamination par la substance en question ait été intentionnelle ou accidentelle

L'avis

Indépendamment d'une introduction intentionnelle ou accidentelle du pollen dans les produits alimentaires

- Tout pollen non autorisé (ex: MON810) et tout produit de la ruche contenant ce pollen est illégal et doit être détruit
- Autorisation spécifique pour le pollen pour utilisation dans l'alimentation humaine : pour tous OGM autorisés avant l'entrée en vigueur du Règlement N°1829/2003

L'avis (Règlement (CE) n°1829/2003)

- □ Imposition de mesures d'étiquetage :
 - Toute denrée alimentaire produite à partir d'OGM ou contenant des ingrédients produits à partir de tels organismes doivent être étiquetés.
 - Etiquetage non applicable aux « denrées alimentaires renfermant un matériel contenant des OGM, consistant en de tels organismes ou produit à partir de tels organismes dans une proportion n'excédant pas 0,9 % de chaque ingrédient, à condition que cette présence soit fortuite ou techniquement inévitable »

Les premières questions

- Existe-t-il un risque alimentaire ?
- Statut du pollen dans le miel
 - Directive Miel => pollen considéré comme un constituant
 - L'avis de la CJUE => pollen à considérer comme un ingrédient
 - ⇒ si > 0,9 % du pollen (de la même espèce ou total ?)
 - ⇒ Étiquetage "produit à partir d'OGM"

Les premières questions

- Les paramètres d'analyse : aucune accréditation
- Localisation des risques (champs et distances) ?
- Qui va payer les analyses ?
- Mesures de coexistence pour l'apiculture ?
 - En cas de perte de valeur ou de destruction, qui va payer ?

Point de vue de la Coordination

- Pollen = constituant naturel du miel, dont la présence dans celuici n'est pas maîtrisable
- Miel = pas le seul produit de la ruche susceptible de contenir des produits GM
- Présence d'OGM dans les produits de la ruche : non acceptable
- Conséquences socio-économiques majeures de la dissémination d'OGM pour le secteur apicole
- Mesures de coexistence avec l'apiculture non existantes, contamination à long terme non prise en compte
- Evaluation de risques incomplète et insuffisante pour l'abeille, d'autant plus que le pollen entrerait maintenant complètement dans le cadre de la législation OGM

Point de vue de la Coordination

- Trop de manques pour assurer que la mise en culture / l'expérimentation d'OGM ne peut avoir de conséquences sur les abeilles et la filière apicole
- Interdiction préventive de la mise en culture d'OGM non autorisés pour le pollen (MON810) et insuffisamment évalués
- Clarification du statut du pollen, des mesures de coexistence, des méthodes de détection et de compensation
- Révision des lignes guides des dossiers d'autorisation sur l'évaluation des risques pour l'abeille du pollen produit à partir d'OGM

Point de vue du GT Miel

- ropean farmers european agri-cooperatives
- Pouvoir continuer à offrir des produits de la ruche aux consommateurs qui ne désirent pas consommer des produits contenant des OGM
- Prendre en compte le pollen dans les demandes d'autorisation et ne pas autoriser les OGM selon des procédures accélérées
- Les analyses doivent être fiables : labo et modes opératoires accrédités. Prendre en compte les faux positifs

Point de vue du GT Miel copa*cogeca

european agri-cooperatives

- Comme certains pollens peuvent être transmis par le vent, on ne peut garantir l'absence de pollen GM => mettre en place un seuil d'action ≠ tolérance 0
- Monitoring européen qualitatif et quantitatif des miels pour rassurer le marché et éviter des contrôles aux apiculteurs
- L'ultrafiltration ne peut être utilisée pour enlever des pollens GM
- Il faut clarifier le statut du pollen dans le miel

Point de vue du GT Miel

Coexistence:

- Connaissance des zones à risque de contamination par les apiculteurs (localisation des parcelles OGM)
- Mesures de coexistence établies sur des bases scientifiques en tenant compte des spécificités des abeilles, des produits et des espèces florales
- Zones d'analyses systématiques établies sur bases scientifiques
- Tous les frais liés aux analyses et aux pertes de valeur éventuelles doivent être pris en charge par un fond européen

- Les pistes analysées
 - MON 810
 - La Commission a demandé à Monsanto de rentrer un dossier pour le pollen du MON 810
 - La Commission ne peut pas l'imposer !!!
 - Ce dossier n'est toujours pas arrivé imminent ??? manque d'intérêt de la firme - risque juridique ???
 - S'il arrive, le délais administratif minimum est de 9 à 10 mois
 - ⇒pas d'agrément avant 2013
 - ⇒Sans cet agrément, tout produit qui contient du pollen MON 810 est interdit à la consommation
 - ⇒ Problème socio-économique pour la filière apicole et dérivés

- Les réponses
 - Rapport de l'EFSA sur le MON 810 : pas de différence entre le pollen de mais MON 810 et les pollens de mais non OGM.
 - □ En cas d'ingrédient, le % de 0,9 % doit être calculé sur base de l'ensemble de la masse des pollens
 - Conseil aux Etats membres de ne pas réaliser d'analyses tant que les méthodes ne seront pas accréditées

- Les analyses
 - Echantillonnage complexe et va dépendre du seuil de détection souhaité
 - Extraction du pollen : en cours de validation
 - Détermination de l'OGM : maîtrisé
 - Détermination d'un pourcentage : très difficile non maîtrisé – demande plusieurs méthodes (analyse pollinique et PCR)

- Les pistes analysées
 - Application de l'arrêt de la CJUE
 - → Mise en conformité de la directive miel
 - → Pollen = ingrédient
 - ⇒ Etiquetage avec une liste d'ingrédients : pollen + miel !
 - ⇒ MIEL = Miel + Pollen ?!

- Les pistes analysées
 - Modification d'une législation
 - OGM (1829/2003)
 - Irréaliste
 - OGM nouveau texte (2013 ou 2014)
 - Irréaliste
 - Directive miel
 - Oui mais pollen = constituant ou ingrédient ?
 - Codécision nécessaire
 - Prévoir au moins deux ans

- Les pistes analysées
 - □ Si miel = constituant
 - ⇒ Calcul de 0,9 % sur la masse du produit
 - ⇒ Solution pour les pollens agréés dans le miel
 - Validité pour les pollens récoltés sur des plantes produisant également du nectar ?
 (> 0,9 % du produit provenant d'une culture OGM et produit animal sans dégradation du code génétique)
 Comment évaluer ce pourcentage ?
 - ⇒ Pas une solution pour le pollen en pelote
 - ⇒ ? Pour les autres produits apicoles vu qu'ils n'ont pas de définition.

- Les pistes analysées
 - La coexistence
 - Demande d'analyser l'impact de l'avis de la CJUE sur les mesures de coexistence pour l'apiculture
 - Un bureau espagnol (Séville) est chargé de faire un rapport sur le sujet pour la fin du 2^e trimestre
 - La Commission ne peut pas aller plus loin que proposer aux Etats membres des « lignes directrices ». Ce sujet est de compétence nationale (régionale)

- 110.000 ha de cultures OGM dans l'UE
- Principalement en Espagne (+ Tch, Rou, Por...)
- Deux cultures autorisées : MON 810 et Amflora (pomme de terre)
- Une vingtaine d'agréments pour l'alimentation (FEED et FOOD) dont les OGM cultivés en Amérique du Sud

- □ Impact économique :
 - En Espagne
 - Demande d'analyses pour fournir les acheteurs étrangers (D)
 - ⇒ Baisse importante des exportations vers les autres pays de l'UE
 - ⇒ Baisse des prix = ± 0,30 0,35 €/kg
 - → Rachat par les conditionneurs espagnols car basse production (liée à la sécheresse) prévisible l'an prochain.

- □ Impact économique
 - Amérique du sud
 - \rightarrow Forte baisse des exportations vers l'UE (\triangle 2010 2011)
 - → Argentine : Oct. Nov. Déc. : -33,2; -16,9; -10,3 %
 - ⇒ Brésil : Oct. Nov. Déc. : -20,3; -14,6; -51,8 %
 - → Déplacement du marché vers les USA et le Canada qui n'accorde pas d'importance à la présence d'OGMs.

- □ Impact économique
 - Chine
 - → Augmentation très importante du marché :
 - → Oct. Nov. Déc. : +14,8 %; + 12,7 %; + 16,29 %
 - ⇒ Prix inférieurs d'un euro au restant du marché (1,34 €)
 - → Pas d'OGMs retrouvés dans les miels! Pourtant présence de cultures d'OGM non autorisées dans l'UE
 - → Ultrafiltration suspectée ou ...???

Conclusion

- Décision de la CJUE : met en évidence de nombreuses lacunes/contradictions réglementaires et pratiques
- Remet en question la possibilité de coexistence de cultures/expérimentation OGM avec l'apiculture et l'agriculture (conventionnelle, biologique)
- Deux dossiers qui demandent une approche différente :
 - ☐ URGENT: MON 810
 - □ OGMs agréés

www.cari.be

<u>www.taceboo</u> k.com/

CARlasb

https://
twitter.com/
#!/CARlasb

Conditionnement du miel

Contexte

La cristallisation

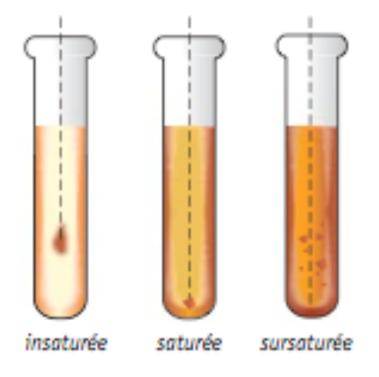
La fermeté

Le matériel

La refonte

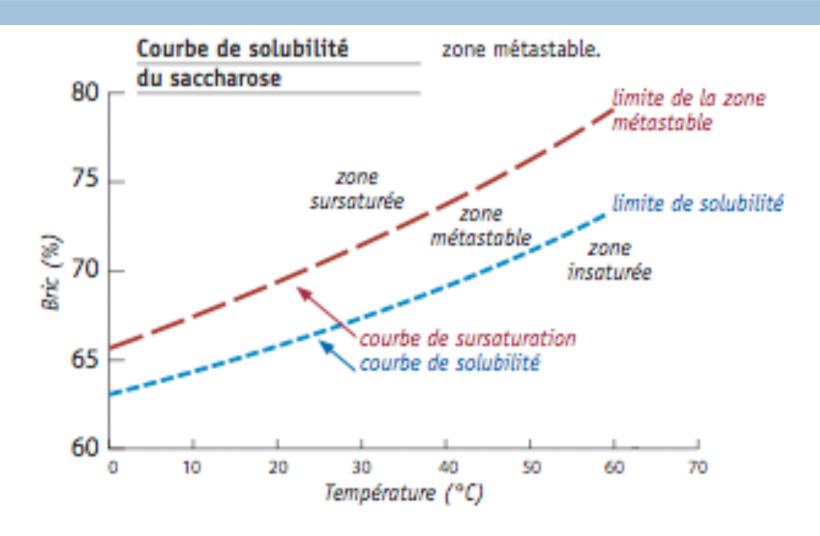
Contexte

- Tous les miels cristallisent naturellement
- La cristallisation naturelle ne garanti pas une 'bonne' cristallisation
- La structure de certains miel est très ferme et rend leur consommation difficile
- Certains miel développent des marbrures le long des parois
- D'autres présentent de petits défauts comme un manque d'homogénéité, des petites bulles...

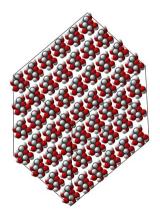

Contexte

- Aujourd'hui, de plus en plus de consommateurs désirent un miel
 - bien homogène
 - a fine cristallisation
 - □ relativement onctueux
- De nombreux miels ne correspondent pas à cette demande :
 - Cristallisation trop grossière
 - Miel trop ferme

Contexte

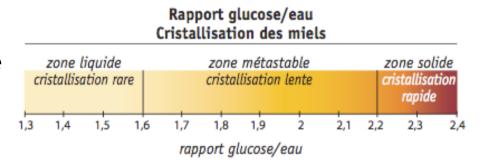

- Pour atteindre cet objectif, il faut travailler sur deux éléments :
 - La grosseur des cristaux
 - La fermeté du produit
- Le travail va dépendre des conditions d'environnement :
 - Volume à traiter
 - Matériel disponible
 - Capacité de gérer la température des locaux

■ Miel = solution sursaturée

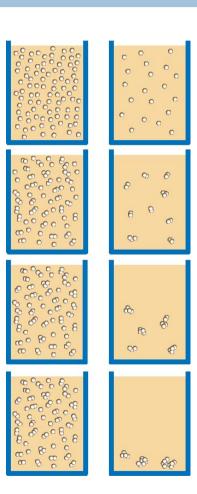


Tabl. 1 Limite de solubilité de différents sucres

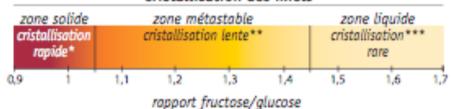
Sucre	Solubilité à 20°C	% en sucre Brix à 20°C
Fructose	3,7 g/ml	78,9%
Glucose	0,9 g/ml	47,2%
Saccharose	2,0 g/ml	66,7%
Maltose	0,8 g/ml	43,8%



- Dans le miel, ce sont principalement les molécules de glucose qui vont former la structure cristalline.
- Plus elles seront nombreuses et plus elles auront de chance de se retrouver et de s'arrimer



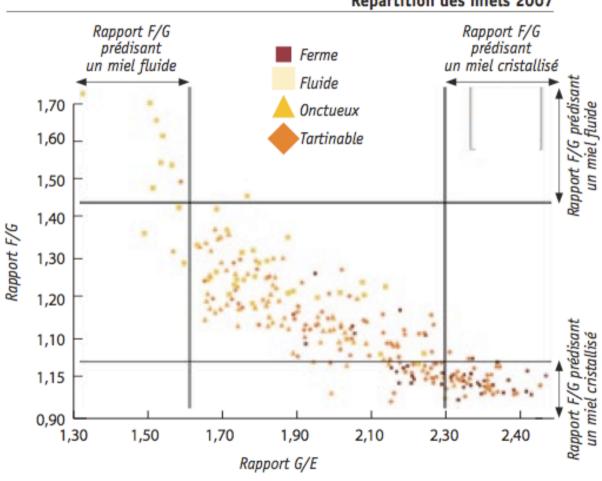
- □ Eau = frein à la cristallisation
- Rapport glucose/eau indicateur de vitesse de cristallisation


Rapport G/E	Ferme	Tartinable	Onctueux	Fluide
1,30 - 1,40	0 %	0 %	0 %	100 %
1,40 - 1,50	0 %	0 %	0 %	100 %
1,50 - 1,60	0 %	10 %	20 %	70 %
1,60 - 1,70	0 %	8 %	71 %	21 %
1,70 - 1,80	0 %	36 %	30 %	33 %
1,80 - 1,90	3 %	19 %	65 %	13 %
1,90 - 2,00	8 %	46 %	42 %	4 %
2,00 - 2,10	7 %	48 %	30 %	15 %
2,10 - 2,20	20 %	60 %	13 %	7 %
2,20 - 2,30	29 %	57 %	9 %	6 %
2,30 - 2,40	41 %	56 %	4 %	0 %
2,40 - 2,50	36 %	60 %	4 %	0 %
> 2,50	86 %	14 %	0 %	0 %

- □ Teneur élevée en fructose
 - → Cristallisation lente
 - ⇒ Grossière
 - → Miel « flasque » ou cristaux en fond de pot
- □ Teneur élevée en glucose
 - ⇒ Cristallisation rapide
 - ⇒ Fine
 - → Miel (trop) ferme

Rapport fructose/glucose

Rapport fructose/glucose Cristallisation des miels


* cristallisation rapide : complète au bout d'un mois

** cristallisation lente : 1 à 12 mois *** cristallisation rare : + de 12 mois

Rapport F/G	Ferme	Tartinable	Onctueux	Fluide
0,90 - 0,95	25	75	0	0
0,95 -1,00	41	50	9	0
1,00 - 1,05	33	52	13	2
1,05 - 1,10	3	62	24	10
1,10 - 1,15	8	51	41	0
1,15 - 1,20	6	34	53	6
1,20 - 1,25	0	20	32	48
1,25 - 1,30	5	25	45	25
1,30 - 1,35	0	0	45	55
1,35 - 1,40	0	0	100	0
1,40 - 1,45	0	0	0	100
1,45 - 1,50	0	33	0	67
> 1,50	0	0	0	100

Cristallisation

Cristallisation

Influence de la température

$$\Box > 30^{\circ}C --> \pm 0$$

 $\square 14^{\circ}C = \text{maximum (si } 18\% \text{ eau)}$

Echantillon	Température de stockage	% de cristallisation après 10 jours			
1	38°C	20	Très granuleuse		
2	35°C	40	Très granuleuse		
3	27°C	60	Granuleuse		
4	24°C	85	Granuleuse		
5	21°C	95	Moyenne		
6	18°C	100	Moyenne		
7	16°C	100	Fine		
8	13°C	100	Très fine		
9	10°C	100	Fine		
10	7°C	50	*		
11	2°C	5	*		
12	-1°C	0	*		

^{*:} impossible de juger, la viscosité est trop élevée

La cristallisation

- □ La présence de nodule d'ensemencement
- ⇒ ensemencement pour accélérer la cristallisation

Echantillon		% de cristallisation après 2 jours	Type de cristallisation
1	2	15	Granuleuse
2	5	70	Fine
3	8	85	Très fine
4	10	90	Très fine
5	12	95	Très fine
6	15	100	Très fine
7	18	100	Très fine
8	20	100	Très fine
9	25	100	Très fine
10	30	100	Très fine

La cristallisation

- Cas de miel refondu ou à cristallisation lente
- ⇒ Ensemencement
 - Le miel utilisé comme semence doit avoir une cristallisation imperceptible
 - Deux modalités :
 - Important (5-15 %) si miel très riche en fructose
 - Ensemencement en cascade =
 - a. 2 kg + 500 g semence -> 24 H au frais = A
 - b. 7,5 kg + A assoupli si nécessaire = B (10 kg)
 - **c.** 50 kg + B
 - **d.**
 - Température optimale de cristallisation ± 14°C
 - Cette température descend si l'on malaxe le produit

La cristallisation

□ Le malaxage

Echantillon	Tps de mélange initial (min)	Tps de mélange 2 ^{ème} jour		Tps de mélange 4ème jour	Type de cristallisation
1	5	-	-	-	Granuleuse
2	10	-	-	-	Granuleuse
3	15	-	-	-	Granuleuse
4	20	-	-	-	Granuleuse
5	5	5	-	-	Granuleuse
6	10	5	5	-	Granuleuse
7	15	5	5	5	Fine
8	20	5	5	5	Fine
9	20	10	10	10	Fine
10	20	15	15	15	Fine
11	20	20	20	20	Fine
12	PAS D'	'AGITATI(ON CONTR	ROLEE	Granuleuse

Les malaxeurs

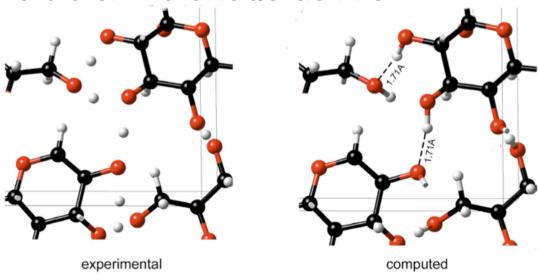
Les malaxeurs

- De simples barres suffisent.
- Il faut éviter la présence de barres au niveau de la surface (min ± 7 cm)
- La rotation est lente
- Ne permet pas de mélanger des miels différents.
- Certains disposent de petites hélices

Le mélangeur

- Permet de mélanger des miels différents
- Peut être utilisé pour la cristallisation des miels
- La vitesse de rotation doit être lente afin d'éviter l'inclusion de bulles d'air

Un mélangeur


- La spirale doit reprendre les deux tiers du diamètre.
- Vitesse de rotation lente
- Spatule en fond de cuve

Fermeté du miel

- □ Fermeté du miel = ponts H₂
 - Lors de la cristallisation
 - □ Peu stable
 - Cassé lors d'un malaxage du miel

Fermeté du miel

- □ F(nombre de molécules de glucose + ponts hydrogènes qui les relient)
- \square Si nombre insuffisant = \pm jeu de carte
- Choc thermique, vibrations
- → Déphasage
- → Effondrement de la structure

Fermeté du miel

- □ Technique d'assouplissement
 - Si miel propre, sans air
 - Si miel cristallisé très finement
 - □ Si la structure du miel est trop ferme
 - Assouplissement
 - 1. Mise du miel à 30 35°C (24 h)
 - 2. Travail du miel dépessage (hélimel)
 - 3. Ajout d'un nouveau miel (liquide) éventuel (5 10 %)
 - 4. Mise en pots
 - Un miel assoupli est un miel fragile
 - conservation au frais

Travailler le miel

- Il faut travailler le miel pour favoriser
 - une cristallisation fine
 - Une consistance correcte.
- L'objectif est d'accélérer la vitesse de cristallisation
 - ⇒ le miel en mouvement régulièrement
 - → malaxage
 - □ Si miel liquide ou à forte teneur en fructose
 - ⇒ Ensemencement
 - La température du miel idéalement : 10 16°C
- □ En cas de mauvaise cristallisation : refonte

Refonte

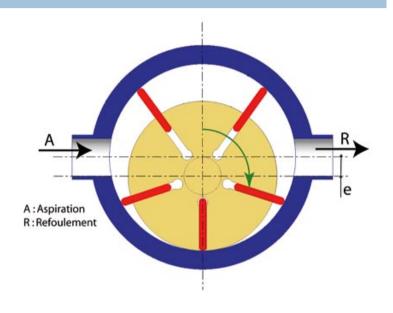
- Nécessaire si le miel est mal cristallisé
- Courbe de refonte différente en fonction de l'état de cristallisation : lent puis rapide
 - => Attention à la surchauffe
- Le refroidissement est plus lent que le chauffage
 - => Refroidissement actif

Matériel de refonte

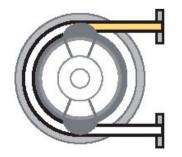
- Etuve
- □ Défigeur

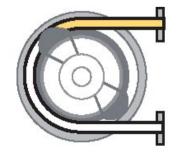
Matériel de refonte

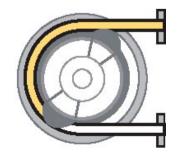
Mélithermou équivalent



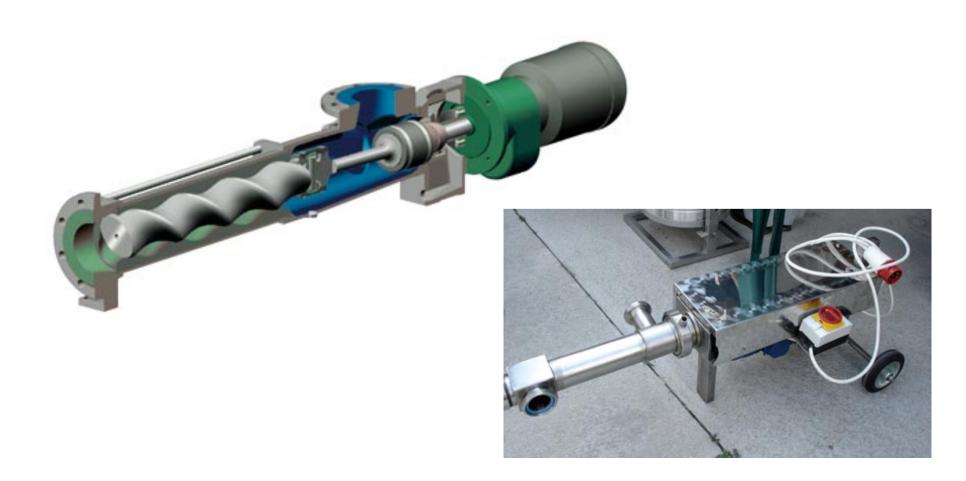
- Différents modèles
 - A impulsion (rotation)
 - caoutchouc ou inox
 - Hélicoïdale
 - Péristaltique
- □ Deux usages principaux :
 - Le transport du miel
 - La mise en pots


- □ Différents modèles
 - A impulsion (rotation)





- □ Différents modèles
 - Péristaltique



- □ Différents modèles
 - Hélicoïdale

- □ Différents modèles
 - A piston

Merci de votre attention

www.cari.be

www.faceboo

k.com/

CARlasb

https://

twitter.com

#!/CARlasb

